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1 Introduction
In this paper we consider the existence and decay esti-
mate and nonexistence of global solutions for the fol-
lowing initial boundary value problem

ut −∆u = g(u), x ∈ Ω, t > 0, (1)
u(x, t) = 0, x ∈ ∂Ω, t > 0, (2)
u(x, 0) = u0(x), x ∈ Ω, (3)

where Ω is a bounded domain in R2 with smooth
boundary ∂Ω, u0(x) is a given data and g(s) is a re-
action term with exponential growth like eks

2
at the

infinity.
There is a vast literature on global existence and

nonexistence of solutions to the reaction-diffusion
equation with polynomial growth reaction terms.
Here we just mention a few of them, for example,
see the works [1, 2, 3, 4, 5, 6, 7, 8] and the refer-
ences therein. These papers deal with the questions
of global existence, asymptotic behavior, blow-up in
time and so forth as well as a variety of methods used
to study these question.

In this paper we will assume that g(s) is a reaction
term with nonlinear exponential growth like eks

2
at

the infinity. When g(u) = eu, model (1)–(3) was pro-
posed by [9] and [10]. In this case, Fujita [11] stud-
ied the asymptotic stability of the solution, Peral and
Vazquez [12] and Pulkkinen [13] considered the sta-
bility and blow-up of the solution. Tello [14] and Ioku
[15] considered the Cauchy problem of heat equation
with g(u) ≈ eu2

for |u| ≥ 1.
Recently, Alves and Cavalcanti [16] concerned

with the nonlinear damped wave equation with expo-
nential source. They proved the global existence as

well as blow up of solutions in finite time, by tak-
ing the initial data inside the potential well [17, 18].
Moreover, they also got the optimal and uniform de-
cay rates of the energy for global solutions.

Motivated by the ideas of [16], we concentrate
our studying on the existence and uniform decay esti-
mate of the energy and finite time blow-up property
of problem (1)-(3). As far as we know, this is the
first work in the literature that take into account the
reaction-diffusion equation with exponential growth
reaction term by potential well theory. The majority of
the works in the literature makes use of the potential
well theory when f possesses polynomial growth, for
instance, see the following works: [6, 18, 19, 20, 21]
and a long list of references therein. The ingredients
used in our proof are essentially the Trudinger-Moser
inequality (see [22, 23]). We establish the existence
of solution and decay rates of the energy. The case
of nonexistence results is also treated, where a finite
time blow-up phenomenon is exhibited for finite en-
ergy solutions, by considering similar arguments due
to [5], adapted for our context.

The remainder of our paper is organized as fol-
lows: in Section 2 we present the main assumptions
and the results, Section 3, Section 4 and Section 5 are
devoted to the proof of the main results.

2 Preliminaries and main results

In this section, we present the main results and some
material needed for the proof of our results. Through-
out this paper, we denote by ||.||, ||.||p ||.||H1

0
the usual

norms in space L2(Ω), Lp(Ω) and H1
0 (Ω), respec-
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tively, and in L2(Ω), the inner product is defined as

(u, v) =

∫
Ω
u(x)v(x)dx.

For the exponential reaction term, a typical exam-
ple is the functions

g(s) = |s|p−2sek|s|
α

for some p > 2, k ≥ 0 and 1 < α < 2. For more
general exponential reaction term, we assume that g :
R → R is a C1 function, for each β > 0, there exists
a positive constant Cβ such that

|g(t)| ≤ Cβe
βt2 , |g′(t)| ≤ Cβe

βt2 . (4)

Furthermore, we assume that the function g(t)/t is in-
creasing in (0,∞), and

lim
t→0

g(t)

t
= 0.

For each ε > 0, β > 0, there exists a positive constant
a which depends on ε, β verifying

|g(t)| ≤ ε|t|+ a|t|p−1eβt
2
, (5)

|G(t)| ≤ ε
2 |t|

2 + a|t|peβt2 , (6)

where

G(t) =

∫ t

0
g(s)ds, p > 2

and there exists a positive constant θ > 2 such that

0 < θG(t) < g(t)t, t ∈ R\{0}. (7)

Throughout this paper we will make repeated
use of the Trudinger-Moser inequality which can be
founded in [22, 23].

Lemma 1 [22, 23] Let Ω be a bounded domain in R2.
Then, for all u ∈ H1

0 (Ω), we have

eα|u|
2 ∈ L1(Ω) ∀ α > 0, (8)

and there exist positive constants L such that, for all
α ≤ 4π,

sup
u∈H1

0 (Ω),||▽u||≤1

∫
Ω
eα|u|

2
dx = L <∞. (9)

Now we define some functionals as follows

E(u) =
1

2
|| ▽ u||2 −

∫
Ω
G(u)dx, (10)

I(u) = || ▽ u||2 −
∫
Ω
ug(u)dx. (11)

And also we define so called ”potential well”, ”unsta-
ble set” and ”potential depth”, respectively, as follows
[18, 17]

W1 = {u ∈ H1
0

∣∣ E(u) < d, I(u) > 0}, (12)

W2 = {u ∈ H1
0

∣∣ E(u) < d, I(u) < 0}, (13)

d = inf{sup
λ∈R

E(λu)
∣∣ u ∈ H1

0\{0}}. (14)

It is obviously that g(u) satisfies the hypotheses of the
Mountain Pass Theorem [24], then d > 0.

Our main results read as follows. The first results
is concerned with the local existence and uniqueness
of weak solutions to (1)-(3).

Theorem 2 Let g(s) satisfies the above assumption,
u0 ∈ H1

0 (Ω). Then the problem (1)-(3) admits a
uniqueness local weak solution u for some T > 0 such
that

u ∈ C([0, T ];H1
0 (Ω)), ut ∈ L2([0, T ];L2(Ω)).

Furthermore, if

sup
0≤t≤T

|| ▽ u(., t)||2 < +∞, (15)

then T =∞.

Theorem 3 Under the assumption of Theorem 2, as-
sume that u0 ∈ W , E(u0) < d, then the local solu-
tions of (1)-(3) obtained in Theorem 2 can be extended
to [0.∞), u(.) ∈W , and there exist positive constants
C and k such that the energy E(t) satisfies the decay
estimates, for large t,

E(t) ≤ Ce−kt. (16)

Theorem 4 Assume further that u0 ∈ W2 and
E(0) < d, then the solutions of problem (1)-(3) blows
up in a finite time.

We also need the following lemmas.

Lemma 5 [25] Let ϕ(t) be a non-increasing and non-
negative function on [0,∞), such that

sup
s∈[t,t+1]

ϕ(s) ≤ C(ϕ(t)− ϕ(t+ 1)), t > 0, (17)

then ϕ(t) ≤ Ce−ωt, whereC,ω are positive constants
depending on ϕ(0) and other known qualities.

Lemma 6 [5] Suppose that a positive, twice differen-
tiable function H(t) satisfied on t ≥ 0 the inequality

H ′′(t)H(t)− (β + 1)(H ′(t))2 ≥ 0, (18)

where β > 0, then there is a t1 < t2 = H(0)
βH′(0) such

that H(t)→∞ as t→ t1.
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In order to prove our main results we remind that
by the embedding theorem for u ∈ H1

0 there exists a
constant C0 depending on p and Ω only such that

||u||p ≤ C0||| ▽ u||.

By multiplying equation (1) by ut, integrating over Ω,
using integration by parts, we get

E′(t) = −
∫
Ω
u2t (x, t)dx ≤ 0. (19)

3 Proof of Theorem 2
In this section, we are going to prove the existence and
uniqueness of the local solution for the problem (1)-
(3) by the contraction mapping principle. We divide
the proof in some lemmas.

First, we make the necessary estimates of solu-
tions for the linearized equation

ut −∆u = f(x, t), x ∈ Ω, t > 0, (20)
u(x, t) = 0, x ∈ ∂Ω, t > 0, (21)
u(x, 0) = u0(x), x ∈ Ω, (22)

Lemma 7 [26] Let u0 ∈ H1
0 (Ω) and f ∈ L2(QT ),

where QT = Ω × [0, T ]. Then the problem (20)-(22)
admits a uniqueness weak solution u such that

u ∈ C([0, T ];H1
0 (Ω)), ut ∈ L2(QT ),

and

sup
0≤t≤T

|| ▽ u||2 + ||ut||2L2(QT )

≤ C(T )||u0||2 + ||f ||2L2(QT ), (23)

where C(T ) is a positive constant.

Now we define the function space

XT = {w ∈ C([0, T ];H1
0 (Ω)), wt ∈ L2(QT ),

w(x, t) = 0, (x, t) ∈ ∂Ω× (0, T )}

equipped with the norm defined by

||w||2XT
= sup

0≤t≤T
|| ▽ w||2 + ||wt||2L2(QT ).

It is easy to see that XT is a Banach space. Let M =
||u0||2 and define the set

P (M ;T ) = {w
∣∣ w ∈ XT , ||w||XT

≤M}.

Obviously, P (M ;T ) is a nonempty bounded closed
convex subset of XT for each M,T > 0.

Lemma 8 Let w ∈ XT , u0 ∈ H1
0 (Ω). Then the prob-

lem

ut −∆u = g(w), x ∈ Ω, t > 0, (24)
u(x, t) = 0, x ∈ ∂Ω, t > 0, (25)
u(x, 0) = u0(x), x ∈ Ω, (26)

has a uniqueness weak solution u such that

u ∈ C([0, T ];H1
0 (Ω)), ut ∈ L2(QT ).

Proof: Noting that w ∈ XT , by (5) and Holder in-
equality we have∫ T

0

∫
Ω
|g(w)|2dxdt

≤
∫ T

0

∫
Ω
C1[ε

2|w|2 + a2|w|2(p−1)e2βw
2
]dxdt

≤
∫ T

0
C1[ε

2||w||2 + a2||w||2(p−1)
4(p−1)(

∫
Ω
e4βw

2
)
1
2 ]dt.

(27)

where Ci and in the following are positive constants.
Using Trudinger-Moser inequality (8) and embedding
theorem, we obtain the following inequality∫ T

0

∫
Ω
|g(w)|2dxdt (28)

≤ C1

∫ T

0
[ε2C2

0 || ▽ w||2

+a2C
2(p−1)
0 C2|| ▽ w||2(p−1)]dt <∞.

We know g(w) ∈ L2(QT ). Then the result follows
from Lemma 7. ⊓⊔

We define the map S for w ∈ XT as follows

S(w) = u

where u is the solution of problem (24)-(26). Obvi-
ously, S maps XT into XT . Our goal is to show that
S has a unique fixed point in P (M ;T ).

Lemma 9 Let u0 ∈ H1
0 (Ω), then S maps P (M ;T )

into P (M ;T ) and S : P (M ;T ) → P (M ;T ) is
strictly contractive if T is appropriately small relative
to M .

Proof: Since w ∈ P (M ;T ) ⊂ XT , form (27),
choosing 4βM2 ≤ 4π, i.e., β ≤ π

M2 , and using
Trudinger-Moser inequality (9), we obtain

sup
||▽w||≤M

∫
Ω
e4βw

2
dx

= sup
||▽w||≤M

∫
Ω
e
4β||▽w||2( w

||▽u|| )
2

dx

≤ sup
||▽w||≤M

∫
Ω
e
4βM2( w

||▽w|| )
2

dx ≤ L, (29)
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Then, by (27), (29) and embedding theorem, we ob-
tain the following inequality

∫ T

0

∫
Ω
|g(w)|2dxdt

≤ C1

∫ T

0
[ε2C2

0 || ▽ w||2

+a2C
2(p−1)
0 L|| ▽ w||2(p−1)]dt

≤ C1(ε
2C2

0M
2 + a2C

2(p−1)
0 LM2(p−1))T

< ∞. (30)

By Lemma 7 and (30), we deduce

||u||2XT
= sup

0≤t≤T
|| ▽ u||2 + ||ut||2L2(QT )

≤ C(T )||u0||2 (31)

+C(T )C1(ε
2C2

0 + a2C
2(p−1)
0 LM2(p−2))M2T.

If M and T satisfy

M2 ≥ 2C(1)||u0||2,

T ≤ min{1, 1
K
}, (32)

K = 2C(1)C1(ε
2C2

0+a
2C

2(p−1)
0 LM2(p−2))

then by (32), we know

sup
0≤t≤T

|| ▽ u||2 + ||ut||2L2(QT ) ≤M
2.

Therefore, if (32) holds, S maps P (M ;T ) into
P (M ;T ).

Now we are going to prove that the map S is
strictly contractive. Let w1, w2 ∈ P (M ;T ) be given.
Set u1 = Sw1, u2 = Sw2, u = u1−u2,w = w1−w2.
Then u satisfies

ut−∆u = g(w1)−g(w2), x ∈ Ω, t > 0, (33)
u(x, t) = 0, x ∈ ∂Ω, t > 0, (34)
u(x, 0) = 0, x ∈ Ω, (35)

By (4), for each β > 0, there exists a constantC3 such
that

|g(w1)− g(w2)| ≤ C3(e
βw2

1 + eβw
2
2)|w|. (36)

Hence

||g(w1)− g(w2)||2L2(QT )

=

∫ T

0

∫
Ω
|g(w1(t))− g(w2(t))|2dxdt

≤ C4

∫ T

0

∫
Ω
(e2βw

2
1 + e2βw

2
2)|w(t)|2dxdt

≤ C4

∫ T

0
(

∫
Ω
|w(t)|4dx)

1
2 [(

∫
Ω
(e4βw

2
1dx))

1
2

+(

∫
Ω
(e4βw

2
2dx))

1
2 ]dt

≤ C5

∫ T

0
||w(t)||24dt

≤ C6

∫ T

0
|| ▽ w(t)||2dt

≤ C7T sup
0≤t≤T

|| ▽ w(t)||2. (37)

From Lemma 1, (37), we arrive at

||u||2XT
= C(T )||g(w1)− g(w2)||2L2(QT )

≤ C(T )C7T sup0≤t≤T || ▽ w(t)||2. (38)

If T satisfies

T ≤ min

{
1, C(1)C7,

1

K

}
, (39)

where K is defined as in (32), then by (38), we get

sup
0≤t≤T

|| ▽ u||2 + ||ut||2L2(QT )

≤ 1

2
sup

0≤t≤T
|| ▽ w||2 + ||wt||2L2(QT ).

The lemma is proved. ⊓⊔
Proof of Theorem 2: It follows from Lemma 9
and the contraction mapping principle that for appro-
priately chosen T > 0, S has a unique fixed point
u(x, t) ∈ P (M ;T ) which is a weak solution of the
problem (1)-(3).

Suppose that equation (15) holds and T < +∞.
For any T ′ ∈ [0;T ), we consider the following prob-
lem

vt −∆v = g(v), x ∈ Ω, t > 0, (40)
v(x, t) = 0, x ∈ ∂Ω, t > 0, (41)
v(x, T ′) = u(x, T ′), x ∈ Ω, (42)

By virtue of (15), ||∇u||2 is uniformly bounded in
T ′ ∈ [0, T ), which allows us to choose T ′′ ∈ (0, T )
such that for each T ′ ∈ (0, T ) the problem (40)-(42)
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has a unique solution v(x, t) ∈ XT ′′ . The existence
of such a T ′′ follows from Lemma 9 and the contrac-
tion mapping principle. In particular, (39) reveals that
T ′′ can be selected independently of T ′ ∈ [0, T ). Set
T ′ = T − T ′′/2, let v denote the corresponding so-
lution of (40)-(42), and define û(x, t) : Ω × [0, T +
T ′′/2]→ R by

û(x, t) = u(x, t), if t ∈ [0, T ′];

v(x, t− T ′), if t ∈ [T ′, T + T ′′/2].

By construction, û(x, t) is a solution of (40)-(42) on
[0, T + T ′′/2), and by local uniqueness, û extends u.
This violates the maximality to [0, T ). Hence, if (15)
holds, then T =∞. This completes the proof. ⊓⊔

4 Proof of Theorem 3
In this section our goal is to prove Theorem 3. To this
end, we begin this section by a result similar to [16].

Lemma 10 Under the assumptions of Theorem 3, i.e.
assume u0 ∈ W1, E(u0) < d, then we have, for all
t ∈ [0, Tmax),

u(t) ∈W1, (43)

||∇u||2 ≤ 2θd

θ − 2
, (44)

E(u(t)) ≥ (
1

2
− 1

θ
)||∇u||2. (45)

Proof: Since E(u(t)) is decreasing by (19), then we
have

E(u(t)) ≤ E(u0) ≤ d, (46)

which implies that u(t) ∈ W1 for all t ∈ [0, Tmax]
as in [16] arguing by contradiction. Then by (43) and
(46), we have∫

Ω
(
1

2
g(u)u−G(u))dx ≤ d,

which together with (7) implies∫
Ω
G(u)dx ≤ 2d

θ − 2
. (47)

Then (44) follows from (46) and (47). Next, we prove
(45). Since u0 ∈ W1, from (43) we have u ∈ W1 for
all t ∈ [0, Tmax). If u = 0, we easily get (45). If
I(u) > 0, using (7), we have

E(u(t)) =
1

2
|| ▽ u||2 −

∫
Ω
G(u)dx

≥ 1

2
|| ▽ u||2 − 1

θ

∫
Ω
ug(u)dx

≥ (
1

2
− 1

θ
)|| ▽ u||2,

which implies (45). Then the proof of Lemma 10 is
complete. ⊓⊔

Proof of Theorem 3: To prove solution is global,
it suffices to show that ||∇u||2 is bounded indepen-
dent of t. It follows from Theorem 2 and (44) that we
can extend the solution to problem (1)- (3) obtained in
Theorem 2 to the whole interval [0,∞).

Next, we prove the decay estimates of the energy.
From (19), we have for any t > 0

∫ t+1

t
||ut||2ds = E(t)− E(t+ 1) = D2(t). (48)

Multiplying the equation (1) by u, integrating over
Ω× [t, t+ 1] and using integration by parts, we get

∫ t+1

t
(||∇u||2 −

∫
Ω
ug(u)dx)ds

=

∫ t+1

t
(u, ut)ds ≤

∫ t+1

t
||u||||ut||ds. (49)

Then we have

2

∫ t+1

t
E(s)ds

=

∫ t+1

t
(|| ▽ u||2 −

∫
Ω
G(u)dx)ds

=

∫ t+1

t
(|| ▽ u||2 −

∫
Ω
ug(u)dx)ds

+

∫ t+1

t

∫
Ω
[ug(u)− 2G(u)]dxds. (50)

By (49), Young inequality, (45) and (48), we have for
any η > 0

∫ t+1

t
(|| ▽ u||2 −

∫
Ω
ug(u)dx)ds

≤
∫ t+1

t
||u||||ut||ds

≤
∫ t+1

t
C0|| ▽ u||||ut||ds

≤
∫ t+1

t
C0

√
2θ

θ − 2
E(s)||ut||ds

≤ η

∫ t+1

t
E(s)ds+

2C2
0θ

(θ − 2)η
D2(t). (51)
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Using (7), (4) and Poincare inequality, we get∫ t+1

t

∫
Ω
[ug(u)− 2G(u)]dxds

≤ (1 +
2

θ
)

∫ t+1

t

∫
Ω
ug(u)dxds

≤ (1 +
2

θ

∫ t+1

t

∫
Ω
[ε|u|2 + a|u|peβu2

]dxds

≤ (1 +
2

θ
)

∫ t+1

t
[ε||u||2

+a||u||2p2p(
∫
Ω
e2βu

2
)
1
2dx]ds

≤ (1 +
2

θ
)

∫ t+1

t
[εC2

0 || ▽ u||2

+aC2p
0 (

2θd

θ − 2
)2(p−1)||u||2×(∫

Ω
e
2β 2θd

θ−2
( u
||∇u||2

)
) 1

2

]ds. (52)

Choosing β such that 4θβd
θ−2 ≤ 4π, and using

Trudinger-Moser inequality (9), we obtain∫ t+1

t

∫
Ω
[ug(u)− 2G(u)]dxds

≤ (1 +
2

θ
)

∫ t+1

t
[εC2

0

2θ

θ − 2
|| ▽ u||2

+aC2p
0 (

2θd

θ − 2
)2(p−1)L||u||2]ds

= 2εC2
0

θ − 2

θ + 2

∫ t+1

t
|| ▽ u||2ds

+aC2p
0 (1 +

2

θ
)(

2θd

θ − 2
)2(p−1)L

∫ t+1

t
||u||2ds

≤ εC8

∫ t+1

t
|| ▽ u||2ds+ C9

∫ t+1

t
||u||2ds.

(53)

Combining (45), (53), (51) with (50),we have∫ t+1

t
E(s)ds

≤ (εC10 + ηC11)

∫ t+1

t
E(s)ds

+C9

∫ t+1

t
||u||2ds++C12D

2(t). (54)

Taking ε, η suitably small, we obtain∫ t+1

t
E(s)ds ≤ C12D

2(t) + C13

∫ t+1

t
||u||2ds.

(55)

In order to estimate the last term on the RHS of (55),
we make use of the inequality for all lager T∫ T

0
||u||2ds ≤ C(T,E(0))

∫ T

0
||ut||2ds. (56)

to be prove later (see Lemma 11). It follows from
(55), (48) and (56) that∫ t+1

t
E(s)ds ≤ C14D

2(t). (57)

Noting that E(t) is non-increasing and (48), we have

E(t) = E(t+1)+D2(t) ≤ C15

∫ t+1

t
E(s)ds+D2(t)

(58)
and from (57) we have

E(t) ≤ C16D
2(t).

Since E(t) is nonincreasing, using Nakao’s theorem
(Lemma 5), we conclude that there exist two positive
constants C and k such that

E(t) ≤ Ce−kt

for t suitably large. Then the exponential decay of
the energy is obtained. The proof of Theorem 3 is
complete. ⊓⊔

Now let us obtain inequality (56), the method is
essentially from Lemma 3.3 in [16].

Lemma 11 Assume that the assumptions of Theorem
3 hold. Then, for all T > T0, there exists a positive
constant C(T0, E(0)) such that the weak solution u of
(1)-(3) satisfies (56).

Proof: We argue by contradiction. Let us suppose
that (56) is not verified and let uk(0) be a sequence
of initial data and uk(0) → u0 strongly in H1

0 where
the corresponding solutions {uk}k∈N of (1)- (3) with
initial energy Ek(0), verifies

lim
k→∞

∫ T
0 ||uk||

2ds∫ T
0 ||ukt||2ds

= +∞, (59)

that is

lim
k→∞

∫ T
0 ||ukt||

2ds∫ T
0 ||uk||2ds

= 0. (60)

Since the initial data are taken satisfying the As-
sumptions of Theorem 3, then, Ek(0) < d for all
k ∈ N. Since Ek(t) ≤ Ek(0) < d, for all k ∈ N,
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we obtain a subsequence, still denoted by {uk} from
now on, which verifies the convergence:

uk → u weakly in H1(QT ), (61)
uk → u weak star in L∞(0, T ;H1

0 (Ω)), (62)
ukt → ut weak star in L∞(0, T ;L2(Ω)). (63)

Employing compactness results we also deduce that

uk → u strongly in L2(0, T ;L2(Ω)), (64)

which implies, from the continuity of g, that

g(uk)→ g(u) a.e. QT

Making use of (44) and Trudinger-Moser inequality,
similar to [16] we deduce that for fixed p > 1

g(uk)→ g(u) weakly in Lp(QT ).

We also observe that from (60) and (62)

lim
k→∞

∫ T

0
||ukt||2ds = 0. (65)

We will divide the proof into two cases, namely,
u ̸= 0 or u = 0.

Since uk is a sequence of solutions to problem (1)
-(3) it satisfies

ukt −∆uk = g(uk), x ∈ Ω, t > 0, (66)
u(x, t) = 0, x ∈ ∂Ω, t > 0, (67)

If u ̸= 0, then from the above convergence, passing to
the limit in (66) we deduce

−∆u = g(u), x ∈ Ω, t > 0,

ut(x, t) = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0.

From the above problem we deduce, for all t ∈ [0, T ],
that

|| ▽ u||2 −
∫
Ω
ug(u)dx = I(t) = 0,

which is a contradiction since u(t) ∈ W1/{0}, that is
I(t) = I(u(t)) > 0.

Now, we define

ck = [

∫ T

0
||uk||2dt]

1
2 , (68)

uk =
uk
ck
, (69)

Ek(t) =
1

2
||utk||2 −

1

2
|| ▽ uk||2. (70)

If u = 0, then from (64) we deduce that

ck → 0 as k → +∞,∫ T

0
||uk||2dt = 1, (71)

Ek(t) ≤
Ek(t)

c2k
. (72)

Recalling (55) and (19) similar to its proof, we
obtain, for some M0, T > M0

E(T ) ≤M0[

∫ T

0
||ut||2ds+

∫ T

0
||u||2ds]

whereM0 depends on θ, d, and employing the integral
of (19), we can write

E(T ) ≤ E(0) ≤M1[

∫ T

0
||ut||2ds+

∫ T

0
||u||2ds]

(73)
for all t ∈ (0, T ), with T large enough. (72) and (73)
give us

Ek(t) ≤
Ek(t)

c2k
≤M1[

∫ T
0 ||ukt||

2ds∫ T
0 ||uk||2ds

+ 1]. (74)

From (60) and (74) we conclude that there exists a
positive constantM such that for all t ∈ [0, T ] and for
all k ∈ N,

Ek(t) ≤
Ek(t)

c2k
≤M,

that is, for all t ∈ [0, T ] and for all k ∈ N,

1

2
||utk||2 −

1

2
|| ▽ uk||2 ≤M. (75)

For a subsequence {uk} we obtain

uk → u weak star in L∞(0, T ;H1
0 (Ω)), (76)

uk → u strongly in L∞(0, T ;L2(Ω)), (77)
ukt → ut weak star in L∞(0, T ;L2(Ω)). (78)

We observe that from (60) we deduce

lim
k→∞

∫ T

0
||ukt||2ds = 0. (79)

In addition uk satisfies the equation

ukt −∆uk =
g(uk)

ck
, x ∈ Ω, t > 0, (80)

u(x, t) = 0, x ∈ ∂Ω, t > 0, (81)
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Similar the proof of (3.66) in [16], we have

lim
k→∞

∫ T

0

∫
Ω

g(uk)

ck
dxds = 0. (82)

Then, from the above convergence we can pass to the
limit in (80), when k goes to infinity to obtain

−∆uk = 0, x ∈ Ω;u(x, t) = 0, x ∈ ∂Ω (83)

showing that u = 0 which is a contradiction with (71).
So, the proof is completed. ⊓⊔

5 Proof of Theorem 4
In this section, we shall prove Theorem 4 by adapting
the concavity method.

Lemma 12 [16] Assume that u0 ∈ W2 and E(0) <
d, then it holds that

u(t) ∈W2, for t ∈ [0, Tmax), (84)
|| ▽ u||2 ≥ 2d, for t ∈ [0, Tmax). (85)

Proof of Theorem 4: Assume by contradiction that
the solution is global. Then for any T > 0 we consider
the function F (t) : [0, T ]→ R+ defined by

F (t) =

∫ t

0
||u||2ds+ (T − t)||u0||2 + ρ(t+ β)2, (86)

where β, T, ρ are positive constants which will be
fixed later(see Levine[5]). Direct computations show
that

F ′(t) = ||u||2 − ||u0||2 + 2ρ(t+ β),

= 2

∫ t

0
(u(s), ut(s))ds+2ρ(t+β), (87)

from (1) and integration by parts. Therefore, due to
equation (1), (7) and (85)

F ′′(t) = −2|| ▽ u||2 + 2

∫
Ω
ug(u)dx+ 2ρ

≥ −2|| ▽ u||2 + 2θ

∫
Ω
G(u)dx+ 2ρ

= (θ − 2)|| ▽ u||2 − 2θE(t) + 2ρ

= (θ − 2)|| ▽ u||2 − 2θE(0)

+2θ

∫ t

0

∫
Ω
u2t (x, s)dxds+ 2ρ

≥ 2(θ − 2)d− 2θE(0)

+2θ

∫ t

0

∫
Ω
u2t (x, s)dxds+ 2ρ. (88)

Now let 2θρ = 2(θ − 2)d− 2θE(0) > 0. Then

F ′′(t) ≥ 2θρ+ 2θ

∫ t

0

∫
Ω
u2t (x, s)dxds. (89)

We also note that

F (0) = T ||u0||2 + ρβ2 > 0,

F ′(0) = 2ρβ > 0,

F ′′(t) ≥ 2θρ > 0, t ≥ 0.

Therefore F (t) and F ′(t) are both positive. It is
clearly that

F (t) ≥
∫ t

0
||u||2ds+ ρ(t+ β)2. (90)

Thus for all (ξ, η) ∈ R2, from (86)- (90) follows

F (t)ξ2 + F ′(t)ξη +
1

2θ
F ′′(t)η2

≥ (

∫ t

0
||u||2ds+ ρ(t+ β)2)ξ2

+2ξη

∫ t

0
(u, ut)ds+ 2ρ(t+ β)ξη

+ρη2 + η2
∫ t

0
||ut||2ds ≥ 0,

which implies (F ′(t))2 − 1
θF (t)F

′′(t) ≤ 0. That is

F (t)F ′′(t)− θ(F ′(t))2 ≥ 0.

Then we complete the proof by standard concavity
method(Lemma 6). ⊓⊔
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