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1 Introduction

In this paper we consider the existence and decay esti-
mate and nonexistence of global solutions for the fol-
lowing initial boundary value problem

u—Au=g(u), €, t>0, (1)
u(xz,t) =0, z €I, t>0, 2)
u(z,0) = up(z), x €9, 3)

where ) is a bounded domain in R? with smooth
boundary 0f2, up(z) is a given data and g(s) is a re-
action term with exponential growth like ek at the
infinity.

There is a vast literature on global existence and
nonexistence of solutions to the reaction-diffusion
equation with polynomial growth reaction terms.
Here we just mention a few of them, for example,
see the works [1, 2, 3, 4, 5, 6, 7, 8] and the refer-
ences therein. These papers deal with the questions
of global existence, asymptotic behavior, blow-up in
time and so forth as well as a variety of methods used
to study these question.

In this paper we will assume that g(s) is a reaction
term with nonlinear exponential growth like ek at
the infinity. When g(u) = €%, model (1)—(3) was pro-
posed by [9] and [10]. In this case, Fujita [11] stud-
ied the asymptotic stability of the solution, Peral and
Vazquez [12] and Pulkkinen [13] considered the sta-
bility and blow-up of the solution. Tello [14] and Ioku
[15] considered the Cauchy problem of heat equation
with g(u) ~ e** for |u| > 1.

Recently, Alves and Cavalcanti [16] concerned
with the nonlinear damped wave equation with expo-
nential source. They proved the global existence as
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well as blow up of solutions in finite time, by tak-
ing the initial data inside the potential well [17, 18].
Moreover, they also got the optimal and uniform de-
cay rates of the energy for global solutions.

Motivated by the ideas of [16], we concentrate
our studying on the existence and uniform decay esti-
mate of the energy and finite time blow-up property
of problem (1)-(3). As far as we know, this is the
first work in the literature that take into account the
reaction-diffusion equation with exponential growth
reaction term by potential well theory. The majority of
the works in the literature makes use of the potential
well theory when f possesses polynomial growth, for
instance, see the following works: [6, 18, 19, 20, 21]
and a long list of references therein. The ingredients
used in our proof are essentially the Trudinger-Moser
inequality (see [22, 23]). We establish the existence
of solution and decay rates of the energy. The case
of nonexistence results is also treated, where a finite
time blow-up phenomenon is exhibited for finite en-
ergy solutions, by considering similar arguments due
to [5], adapted for our context.

The remainder of our paper is organized as fol-
lows: in Section 2 we present the main assumptions
and the results, Section 3, Section 4 and Section 5 are
devoted to the proof of the main results.

2 Preliminaries and main results

In this section, we present the main results and some
material needed for the proof of our results. Through-
out this paper, we denote by ||.||, [|.||, ||| |H6 the usual

norms in space L%(Q), LP(Q2) and H{ (), respec-
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tively, and in L?(£2), the inner product is defined as

(u,v) = / u(z)v(x)de.
Q
For the exponential reaction term, a typical exam-

ple is the functions

g(s) = [s[P~2scHl”

for some p > 2,k > 0and 1 < a < 2. For more
general exponential reaction term, we assume that g :
R — R is a C! function, for each 3 > 0, there exists
a positive constant C'z such that

9] < Coe™, 19 (0] < Coe™. @)

Furthermore, we assume that the function g(t¢)/t is in-
creasing in (0, c0), and

lim @ =0.
t—0 t

For each ¢ > 0, § > 0, there exists a positive constant
a which depends on ¢, 3 verifying

l9(8)] < elt] + alt[P~te, )
GO < 51t + altPe™™, (©)
where .
G(t) = /0 g(s)ds,p > 2
and there exists a positive constant § > 2 such that
0 < 0G(t) < g(t)t, teR\{0}. @)

Throughout this paper we will make repeated
use of the Trudinger-Moser inequality which can be
founded in [22, 23].

Lemma 1 /22, 23] Let Q) be a bounded domain in R?.
Then, for all u € H&(Q) we have
v e LV(Q) Va0, (8)

and there exist positive constants L such that, for all
o < A4m,

sup / el dy = I < o0. 9)
u€Hg(Q),||vul|<1/Q

Now we define some functionals as follows
1
B = 5l vulP - [ Gz, (10)
Q

uwzuvmﬁ—lgmww. (1
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And also we define so called “’potential well”, “unsta-
ble set” and potential depth”, respectively, as follows
[18, 17]

Wy ={ueH; | E(u) <d,I(u)>0},(12)
Wo ={u€ Hj | E(u) <d,I(u) <0},(13)

d= inf{iLEIEE()\U) |ue HI)\{0}}. (14

It is obviously that g(u) satisfies the hypotheses of the
Mountain Pass Theorem [24], then d > 0.

Our main results read as follows. The first results
is concerned with the local existence and uniqueness
of weak solutions to (1)-(3).

Theorem 2 Let g(s) satisfies the above assumption,
uy € H&(Q) Then the problem (1)-(3) admits a
uniqueness local weak solution u for some T > 0 such
that

we C([0,T); H(S), up € L2([0,T); L(%)).
Furthermore, if

sup || 7 u(., t)||* < +o0, (15)
0<t<T

then T' = oo.

Theorem 3 Under the assumption of Theorem 2, as-
sume that uy € W, E(ug) < d, then the local solu-
tions of (1)-(3) obtained in Theorem 2 can be extended
10 [0.00), u(.) € W, and there exist positive constants
C' and k such that the energy E(t) satisfies the decay
estimates, for large t,

E(t) < Ce ™. (16)

Theorem 4 Assume further that ug € Wy and
E(0) < d, then the solutions of problem (1)-(3) blows
up in a finite time.

We also need the following lemmas.

Lemma 5 [25] Let ¢(t) be a non-increasing and non-
negative function on [0, 00), such that

sup ¢(s) < C(o(t) — ot +1)), >0, (17)
s€t,t+1]

then ¢(t) < Ce™**, where C,w are positive constants
depending on ¢(0) and other known qualities.

Lemma 6 [5] Suppose that a positive, twice differen-
tiable function H (t) satisfied ont > 0 the inequality

H'(OH(t) — (B+1)(H'(1)> >0,  (18)

where 3 > 0, then there is a t1 < ty = Bl;lf(’?())) such
that H(t) — oo ast — t;.
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In order to prove our main results we remind that
by the embedding theorem for u € H{ there exists a
constant Cy depending on p and €2 only such that

[lullp < Colll 7 ull-

By multiplying equation (1) by u;, integrating over {2,
using integration by parts, we get

E'(t) = —/ ul(x,t)dx < 0. (19)
Q

3 Proof of Theorem 2

In this section, we are going to prove the existence and
uniqueness of the local solution for the problem (1)-
(3) by the contraction mapping principle. We divide
the proof in some lemmas.

First, we make the necessary estimates of solu-
tions for the linearized equation

up — Au = f(x,t), € Q, t >0, (20)
u(z,t) =0, z €0, t>0, 21
U(II),O) = Uo(x)7 HAES Qv (22)
Lemma 7 [26] Let ug € H}(Q) and f € L*(Qr),

where Qr = Q x [0, T]. Then the problem (20)-(22)
admits a uniqueness weak solution u such that

ue O([0,T]; Hy (), ue € L*(Qr),
and
2 2
su ul|” + ||u
s 1|7 ull + el
< CM)luol* +11f11220py,  (23)
where C(T) is a positive constant.

Now we define the function space

Xr = {weC(0,T); Hy(Q)),w: € L*(Qr),
w(z,t) =0, (x,t) € 02 x (0,T)}

equipped with the norm defined by

2 2 2
w = su wl|” + ||w .
I HXT ogthH v wl| I tHL2(QT)

It is easy to see that X7 is a Banach space. Let M =
||uo||? and define the set

P(M;T) ={w | w e Xp,||w||x, < M}.
Obviously, P(M;T') is a nonempty bounded closed

convex subset of X7 for each M, T > 0.
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Lemma 8 Let w € Xp,ug € H}(Q). Then the prob-
lem

u—Au=g(w), z€Q, t>0, (24)
u(z,t) =0,z € 02, t >0, (25)
U(QS‘,O) = U0($), r €, (26)

has a uniqueness weak solution u such that
u € C([0,T]; Hy(Q)),  w € L*(Qr).

Proof: Noting that w € X7, by (5) and Holder in-
equality we have

/ ' | tatw)Pazi

T
/ / ChlE2w]? + a2|w D628 | dydt
0 Q

T B e
| cuihol + el [ ey ae
(27)

IN

IA

where C; and in the following are positive constants.
Using Trudinger-Moser inequality (8) and embedding
theorem, we obtain the following inequality

T
/ \g(w)\gdxdt (28)
0 Q
T

< 01/0 £2C2)| v wlf?

+a2C2P I 0y || 7 w2 V)dt < co.

We know g(w) € L?*(Qr). Then the result follows
from Lemma 7. O
We define the map S for w € X7 as follows

S(w) =u

where u is the solution of problem (24)-(26). Obvi-
ously, S maps X7 into X7. Our goal is to show that
S has a unique fixed point in P(M;T).

Lemma9 Let ug € Hi(Q), then S maps P(M;T)
into P(M;T) and S : P(M;T) — P(M;T) is
strictly contractive if T' is appropriately small relative

to M.

Proof: Since w € P(M;T) C Xrp, form (27),
choosing ABM? < A4m, ie., 68 < #, and using
Trudinger-Moser inequality (9), we obtain

2
sup /646“’ dx
[[Vw||<M J/Q

— sup /ewnvwn%l%)?dx
lvwl|<M JQ

< sup / e4ﬁM2(vawH)2dx <L, (29
[[vw||[<M JQ
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Then, by (27), (29) and embedding theorem, we ob-
tain the following inequality

/ ' PR

T
01/ €2C2)| 7wl

IA

0
+a2CRP VL) 7 w] 2PV dt

< 01(82031\42 + a2C§(p71)LM2(P—1))T

A

By Lemma 7 and (30), we deduce

lullie, = sup Il v ull® + [fuellZp)
< C(T)]|uo 31)
+C(T)Cy (2C2 + a2~ D LA2e-2) A 2T

If M and T satisfy

M? > 20(1)||uo %,
1
T < min{l, — 2
Py mln{ 7K}7 (3 )

K = 2C(1)01 (2C3+a2C2P ™ La22))
then by (32), we know

2 2 2
su ull” + ||u < M-=.
ogthH Vol + ] tHL2(QT)

Therefore, if (32) holds, S maps P(M;T) into
P(M;T).

Now we are going to prove that the map S is
strictly contractive. Let wi, we € P(M;T) be given.
Setu; = Swi, us = Swa, U = U —Us, W = W1 —Ws.
Then v satisfies

ur—Au = g(wi)—g(wse),z € Q,t > 0,(33)
u(z,t) =0,z € 02, t >0, (34)
u(x,0) =0, x € Q, (35)

By (4), for each 3 > 0, there exists a constant C'3 such
that

lg(wi) — glws)| < Ca(e”F + ™ B)w|.  (36)
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Hence

lg(w1) = g(wa)| |72,

- [ oo

C / / (e250F 4 62893 [y (1) 2t
0 Q

oo [ ([ lwortani [ @t}

+( /Q (3 dx))2]dt

2(t))|?dxdt

IA

IN

IN

T
Cs /0 (b)) 2dt

T
Co / |5 w(t)|dt
< C7T sup || w(t)|*. (37)
0<t<T

IN

From Lemma 1, (37), we arrive at

lull%, = C(D)llg(wr) — g(w2)[1Z20,
< C(T)CrTsupgeyer || 7 w(t)]? (38)

If T satisfies
1
T< min{l,C(l)C'7,K}, 39)

where K is defined as in (32), then by (38), we get

2 2
sup ul|” + ||u
0 117 ull*+ [l g

< Lap 17 wl? + llwel 220,
2 g<i<T !

The lemma is proved. g

Proof of Theorem 2: It follows from Lemma 9
and the contraction mapping principle that for appro-
priately chosen 7' > 0, S has a unique fixed point
u(z,t) € P(M;T) which is a weak solution of the
problem (1)-(3).

Suppose that equation (15) holds and 7' < +o0.

For any 7" € [0;T), we consider the following prob-
lem

—Av=g(v), ze€Q,t>0, (40)

v(z,t) =0,2 € 0, t>0, 41

v(z, T') = u(z,T"), = €Q, (42)

By virtue of (15), ||[Vu||? is uniformly bounded in
" € ]0,T), which allows us to choose 7" € (0,T))
such that for each 7" € (0,T') the problem (40)-(42)
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has a unique solution v(x,t) € Xp». The existence
of such a T" follows from Lemma 9 and the contrac-
tion mapping principle. In particular, (39) reveals that
T" can be selected independently of 77 € [0,T). Set
T' =T — T"/2, let v denote the corresponding so-
lution of (40)-(42), and define u(z,t) : Q x [0,T +
T"/2] — R by

u(z,t) = u(wz,t), if t€[0,77];

ola,t—T'), if t e [T, T+T"/2.

By construction, u(x,t) is a solution of (40)-(42) on
[0,T + T"/2), and by local uniqueness, u extends w.
This violates the maximality to [0, 7"). Hence, if (15)
holds, then 7" = oo. This completes the proof. O

4 Proof of Theorem 3

In this section our goal is to prove Theorem 3. To this
end, we begin this section by a result similar to [16].

Lemma 10 Under the assumptions of Theorem 3, i.e.
assume uy € Wi, E(ug) < d, then we have, for all

t E [07 Tmaa:),
u(t) € Wy, (43)
20d
[Vull® < 7=, (44)
11 )
E(u(t) 2 (5 = gIlIVull 45)
Proof: Since E(u(t)) is decreasing by (19), then we
have
E(u(t)) < E(ug) <d, (46)

which implies that u(t) € W for all t € [0, Tynaq)
as in [16] arguing by contradiction. Then by (43) and
(46), we have

1
/(g(u)u — G(u))dx < d,
Q 2

which together with (7) implies

2d
<
/G da:_e_

Then (44) follows from (46) and (47). Next, we prove
(45). Since uy € W1, from (43) we have u € W; for
all t € [0, Tinaz). If u = 0, we easily get (45). If
I(u) > 0, using (7), we have

Put) = 3l v ulf = [ Gluda

1 , 1
sl vl = [ ugtu)da

1

1 2
(5= Il v ull

47

Vv

Vv
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which implies (45). Then the proof of Lemma 10 is
complete. O

Proof of Theorem 3: To prove solution is global,
it suffices to show that ||Vu||? is bounded indepen-
dent of ¢. It follows from Theorem 2 and (44) that we
can extend the solution to problem (1)- (3) obtained in
Theorem 2 to the whole interval [0, c0).

Next, we prove the decay estimates of the energy.
From (19), we have for any ¢ > 0

t+1
/ llue|[*ds = E(t) — E(t +1) = D*(t). (48)
t

Multiplying the equation (1) by wu, integrating over
) x [t,t + 1] and using integration by parts, we get

/ Tl - [ vty

t+1 t+1
/ (u,ug)ds < / [ | . (49)
t t

Then we have

t+1
5 /t B(s)ds
Tl - [ crds
/ Il
/:H(H v ul|? - /ng(u)dx)ds
" /t - /Q fug(u) — 2G(u)]dxds.

By (49), Young inequality, (45) and (48), we have for

any n > 0
t+1 )
/t (Il ul? - /Q ug(u)dz)ds

t+1
/t [l [zl s

t+1
Col| v ull[|utl|ds

t+1 20
/ Coy/ 7E )| ]| ds

/ E(s d+9 G)DQ().
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Using (7), (4) and Poincare inequality, we get

/t h /Q[ug(“> — 2G(u))dzds

9 t+1
< (1+)/ /ug(u)dmds
0" ) Ja
9 t+1 5
< (1+/ /[e|u|2—|—a|u\peﬁu |dxds
0 Ja
9 t+1 )
< @+ [ lelal
t
rallu )b
Q
9 t+1 ) )
< sy [ vl
o 20d
+aCJngj§V@ UUU\2X
(/ RE = |v7i2))2}dg. (52)
Q

Choosing [ such that % < 4m, and using

Trudinger-Moser inequality (9), we obtain

/Hl/ug — 2G(u)dads

t+1 20
1+ [ e gl vl

20d
+aCP (= .

IN

57 VLl ds

6 —2 t+1
— 92 / | v ul2ds

09 +2
20d t+1
aC2(1+ 200 )L/ | 2ds
t

0)(0—2

t+1 t+1
508/ I vuy2ds+cg/ | .
t t

(33)

IN

Combining (45), (53), (51) with (50),we have

t+1
E(s)ds
! t+1

< (6010 + 77C11) E(S)ds
t

t+1
+Cy / ||u||?ds + +C12D?(t). (54)
t

Taking ¢, ) suitably small, we obtain

t+1
HuHst.

(35

t+1
/ E(s)ds < 012D2(t) + 013/
t t
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In order to estimate the last term on the RHS of (55),
we make use of the inequality for all lager T'

T T
| wlPds < c@B©) [ ulds. co
0 0
to be prove later (see Lemma 11). It follows from
(55), (48) and (56) that
t+1

E(s)ds < C14D?(t). (57)
t

Noting that F'(t) is non-increasing and (48), we have

t+1
E(s)ds+D?(t)

(58)

E(t) = B(t+1)+D*(t) < C15

and from (57) we have
E(t) < C1¢D?(t).

Since E(t) is nonincreasing, using Nakao’s theorem
(Lemma 5), we conclude that there exist two positive
constants C' and k such that

E(t) < Ce™™

for ¢ suitably large. Then the exponential decay of
the energy is obtained. The proof of Theorem 3 is
complete. g

Now let us obtain inequality (56), the method is
essentially from Lemma 3.3 in [16].

Lemma 11 Assume that the assumptions of Theorem
3 hold. Then, for all T > Ty, there exists a positive
constant C (T, E(0)) such that the weak solution u of
(1)-(3) satisfies (56).

Proof: We argue by contradiction. Let us suppose
that (56) is not verified and let u;(0) be a sequence
of initial data and uy(0) — ug strongly in H} where
the corresponding solutions {uy }xen of (1)- (3) with
initial energy Ej(0), verifies

T 2
d
o ldPds g
koo [0 [Juke|[2ds
that is
d
ol Pds )

a3 ol Jug|2ds

Since the initial data are taken satisfying the As-
sumptions of Theorem 3, then, E;(0) < d for all
k € N. Since Ei(t) < Er(0) < d, for all kK € N,
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we obtain a subsequence, still denoted by {uy} from
now on, which verifies the convergence:

u, — u weakly in H(Qr), 61)
up — u weak star in L>(0,T; H}(Q)), (62)
ugy — ug weak star in L (0, T; L3(Q)). (63)

Employing compactness results we also deduce that
ug — u strongly in L?(0, T; L*(Q2)), (64)
which implies, from the continuity of g, that
g(ug) = g(u) a.e. Qr

Making use of (44) and Trudinger-Moser inequality,
similar to [16] we deduce that for fixed p > 1

9(uk) — g(u) weakly in LP(Qr).

We also observe that from (60) and (62)

k—o00

T
lim |[uge|[2ds = 0. (65)
0

We will divide the proof into two cases, namely,
u#0oru=0.

Since uy, is a sequence of solutions to problem (1)
-(3) it satisfies

ugt — Aug = g(ug), x € Q,t>0, (66)
u(z,t) =0,2 € 09, t>0, (67)

If u # 0, then from the above convergence, passing to
the limit in (66) we deduce

—-Au=g(u), ze€Q,t>0,
ut(x,t) =0,z € Q, t>0,
u(z,t) =0,z € 02, t>0.

From the above problem we deduce, for all ¢ € [0, T,
that

I ull* = | uglu)da = 1(¢) =
which is a contradiction since u(t) € W1 /{0}, that is

I(t) = I(u(t)) > 0.
Now, we define

T
1
Ck:[/ ||ug|[dt] 2, (68)
0
Ty = % (69)
Ck
Ek(t):§llutk\| —5\|vukH- (70)
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If v = 0, then from (64) we deduce that

c, =0 as k — o0,

T
/ [t = 1, (71)
0
Bty < 20, )
k

Recalling (55) and (19) similar to its proof, we
obtain, for some My, T > M

T T
EGMM%M\MW@+/Hw%ﬂ
0 0

where My depends on 6, d, and employing the integral
of (19), we can write

T T
MﬂSE®§NMA\MWm+AHW%ﬂ

(73)
forall t € (0,7), with T" large enough. (72) and (73)
give us

T 2
— Ey(t ukt||*ds
B < B0 < o 100y g
“ Jo luxl[?ds

From (60) and (74) we conclude that there exists a
positive constant M such that for all ¢t € [0, T'] and for
all k e N,

Ek(t) < Ek(t)

;o <M,
Ck,

that is, for all ¢t € [0, 7] and for all k € N,
e Ly
iuutk” _§”Vuk|| < M. (75)

For a subsequence {uy } we obtain

Uy — u weak starin L>°(0,T; H}(Q)), (76)
U — u strongly in L>°(0,T; L3(Q)), (77)
Uyt — U weak starin L°(0,T; L?(2)). (78)

We observe that from (60) we deduce

T
lim / |[Tre||>ds = 0. (79)
k—o0 0

In addition uy, satisfies the equation

Ty — ATy, = g(cu’“), zeQt>0, (80)
k
Uz, t) =0,2 €90, t>0, 81)
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Similar the proof of (3.66) in [16], we have

T
lim/ /g(uk)dmdszo. (82)
k—o0 0 Q Ck

Then, from the above convergence we can pass to the
limit in (80), when k goes to infinity to obtain
—Atp =0, z€Qu(x,t)=0,zec0Q (83)

showing that © = 0 which is a contradiction with (71).
So, the proof is completed. O

5 Proof of Theorem 4

In this section, we shall prove Theorem 4 by adapting
the concavity method.

Lemma 12 [16] Assume that ug € Wy and E(0) <
d, then it holds that

u(t) S W27 fO?“ te [OaTmax)a (84)
|7 ul|?> >2d, for t€0,Tha). (85)

Proof of Theorem 4: Assume by contradiction that

the solution is global. Then for any 7' > 0 we consider
the function F'(t) : [0,7] — R™ defined by

t
-—A|WW@+«T—wme+pa+m%@®

where (3,7, p are positive constants which will be
fixed later(see Levine[5]). Direct computations show
that

F'(t) = [[ull* — |luol[* + 2p(t + B),

- 2/&u@»u4@ﬁu+zpu+ﬂ»@n
0

from (1) and integration by parts. Therefore, due to
equation (1), (7) and (85)

F (1) Z'QHVMF+2l¥WWW$+%

A\

—2||Vu|]2+29/ G(u)dz + 2p
Q

(6 —2)|| v ul> — 26E(t) +2p
(6 —2)|| v ul> - 20E(0)

+29/ /ut x, s)dxds + 2p

0 —2)d—20E(0

+29/ /uf(w,s)dmds+2p. (88)
0 Jo

v
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Now let 26p = 2(6 — 2)d — 20 E(0) > 0. Then

t
F(t) > 260p + 26 / / uf(z, s)deds.  (89)
0 JQ

We also note that

F(0) = T|[uo||* + p8* > 0,
F'(0) = 2pB > 0,
F"(t) >20p >0, t > 0.

Therefore F(t) and F'(t) are both positive. It is
clearly that

F(t) = /Ot lull*ds + p(t+ 8)*. (90)
Thus for all (£,7) € R2, from (86)- (90) follows
FOE + P00 + 2 P00
([ s+ ot + 8¢
+oen /O (s un)ds + 200t + B)En
b4 [ s > 0

which implies (F'(t))? — $F(t)F"(t) < 0. That is

F(t)F"(t) — 0(F'(t))* > 0.
Then we complete the proof by standard concavity
method(Lemma 6). O
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